Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Viruses ; 16(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38675859

ABSTRACT

In Australia, Soldier flies (Inopus spp.) are economically significant pests of sugarcane that currently lack a viable management strategy. Despite various research efforts, the mechanisms underlying the damage caused by soldier fly larvae remain poorly understood. Our study aims to explore whether this damage is associated with the transmission of plant viruses during larval feeding. We also explore the larval transcriptome to identify any entomopathogenic viruses with the potential to be used as biocontrol agents in future pest management programs. Seven novel virus sequences are identified and characterised using de novo assembly of RNA-Seq data obtained from salivary glands of larvae. The novel virus sequences belong to different virus families and are tentatively named SF-associated anphevirus (SFaAV), SF-associated orthomyxo-like virus (SFaOV), SF-associated narna-like virus (SFaNV), SF-associated partiti-like virus (SFaPV), SF-associated toti-like virus (SFaTV-1 and SFaTV-2) and SF-associated densovirus (SFaDV). These newly identified viruses are more likely insect-associated viruses, as phylogenetic analyses show that they cluster with other insect-specific viruses. Small RNA analysis indicates prominent peaks at both 21 nt and 26-29 nt, suggesting the activation of host siRNA and piwiRNA pathways. Our study helps to improve understanding of the virome of soldier flies and could identify insect viruses for deployment in novel pest management strategies.


Subject(s)
Diptera , Gene Expression Profiling , Larva , Phylogeny , Saccharum , Animals , Larva/virology , Diptera/virology , Australia , Saccharum/virology , Transcriptome , Insect Viruses/genetics , Insect Viruses/classification , Plant Viruses/genetics , Plant Viruses/classification , Genome, Viral
2.
Vector Borne Zoonotic Dis ; 22(11): 545-552, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36315188

ABSTRACT

Background: Bat flies (Diptera: Hippoboscoidea: Nycteribiidae and Streblidae) are increasingly appreciated as hosts of "bat-associated" viruses. We studied straw-colored fruit bats (Eidolon helvum) and their nycteribiid bat flies (Cyclopodia greefi) in Nigeria to investigate the role of bat flies in vectoring or maintaining viruses. Methods: We captured bats and bat flies across northern Nigeria. We used metagenomics to identify viruses in 40 paired samples (20 flies from 20 bats). We characterized viruses using genomic and phylogenetic methods, and we compared infection frequencies in bats and their bat flies. Results: In 20 bats, we detected two individuals (10%) infected with eidolon helvum parvovirus 1 (BtPAR4) (Parvoviridae; Tetraparvovirus), previously described in Ghana, and 10 bats (50%) with a novel parvovirus in the genus Amdoparvovirus (Parvoviridae). The amdoparvoviruses include Aleutian disease virus of mink and viruses of other carnivores but have not previously been identified in bats or in Africa. In 20 paired bat flies (each fly from 1 bat) all (100%) were infected with a novel virus in the genus Sigmavirus (Rhabdoviridae). The sigmaviruses include vertically transmitted viruses of dipterans. We did not detect BtPAR4 in any bat flies, and we did not detect the novel sigmavirus in any bats. However, we did detect the novel amdoparvovirus in 3 out of 20 bat flies sampled (15%), including in 2 bat flies from bats in which we did not detect this virus. Discussion: Our results show that bats and their bat flies harbor some viruses that are specific to mammals and insects, respectively, and other viruses that may transmit between bats and arthropods. Our results also greatly expand the geographic and host range of the amdoparvoviruses and suggest that some could be transmitted by arthropods. Bat flies may serve as biological vectors, mechanical vectors, or maintenance hosts for "bat-associated" viruses.


Subject(s)
Chiroptera , Diptera , Rhabdoviridae , Animals , Chiroptera/virology , Diptera/virology , Nigeria/epidemiology , Phylogeny , Rhabdoviridae/genetics , Rhabdoviridae Infections/transmission , Rhabdoviridae Infections/virology
3.
J Virol ; 96(15): e0075122, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867566

ABSTRACT

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.


Subject(s)
Blood , Diptera , Feeding Behavior , Insect Vectors , Lumpy Skin Disease , Lumpy skin disease virus , Aedes/anatomy & histology , Aedes/virology , Animals , Cattle/virology , Ceratopogonidae/anatomy & histology , Ceratopogonidae/virology , Culex/anatomy & histology , Culex/virology , Diptera/anatomy & histology , Diptera/physiology , Diptera/virology , Insect Vectors/anatomy & histology , Insect Vectors/physiology , Insect Vectors/virology , Lumpy Skin Disease/virology , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/physiology , Membranes, Artificial , Muscidae/anatomy & histology , Muscidae/virology , Time Factors
4.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34960644

ABSTRACT

Members of the Lipopteninae subfamily are blood-sucking ectoparasites of mammals. The sheep ked (Melophagus ovinus) is a widely distributed ectoparasite of sheep. It can be found in most sheep-rearing areas and can cause skin irritation, restlessness, anemia, weight loss and skin injuries. Various bacteria and some viruses have been detected in M. ovinus; however, the virome of this ked has never been studied using modern approaches. Here, we study the virome of M. ovinus collected in the Republic of Tuva, Russia. In our research, we were able to assemble full genomes for five novel viruses, related to the Rhabdoviridae (Sigmavirus), Iflaviridae, Reoviridae and Solemoviridae families. Four viruses were found in all five of the studied pools, while one virus was found in two pools. Phylogenetically, all of the novel viruses clustered together with various recently described arthropod viruses. All the discovered viruses were tested on their ability to replicate in the mammalian porcine embryo kidney (PEK) cell line. Aksy-Durug Melophagus sigmavirus RNA was detected in the PEK cell line cultural supernate after the first, second and third passages. Such data imply that this virus might be able to replicate in mammalian cells, and thus, can be considered as a possible arbovirus.


Subject(s)
Arboviruses/genetics , Diptera/virology , Ectoparasitic Infestations/virology , Sheep Diseases/parasitology , Virome , Animals , Arboviruses/isolation & purification , Cell Line , Phylogeny , Reoviridae , Rhabdoviridae , Russia , Sheep
5.
Viruses ; 13(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34835032

ABSTRACT

This study aimed to determine the vector competence of bat-associated nycteribiid flies (Eucamsipoda africana) for Marburg virus (MARV) in the Egyptian Rousette Bat (ERB), Rousettus aegyptiacus. In flies fed on subcutaneously infected ERBs and tested from 3 to 43 days post infection (dpi), MARV was detected only in those that took blood during the peak of viremia, 5-7 dpi. Seroconversion did not occur in control bats in contact with MARV-infected bats infested with bat flies up to 43 days post exposure. In flies inoculated intra-coelomically with MARV and tested on days 0-29 post inoculation, only those assayed on day 0 and day 7 after inoculation were positive by q-RT-PCR, but the virus concentration was consistent with that of the inoculum. Bats remained MARV-seronegative up to 38 days after infestation and exposure to inoculated flies. The first filial generation pupae and flies collected at different times during the experiments were all negative by q-RT-PCR. Of 1693 nycteribiid flies collected from a wild ERB colony in Mahune Cave, South Africa where the enzootic transmission of MARV occurs, only one (0.06%) tested positive for the presence of MARV RNA. Our findings seem to demonstrate that bat flies do not play a significant role in the transmission and enzootic maintenance of MARV. However, ERBs eat nycteribiid flies; thus, the mechanical transmission of the virus through the exposure of damaged mucous membranes and/or skin to flies engorged with contaminated blood cannot be ruled out.


Subject(s)
Chiroptera/virology , Diptera/virology , Disease Vectors , Marburgvirus/isolation & purification , Animals , Caves , Diptera/physiology , Ectoparasitic Infestations/veterinary , South Africa
6.
Arch Virol ; 166(10): 2841-2846, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34357464

ABSTRACT

Native Australian soldier flies, Inopus spp. (Diptera: Stratiomyidae), are agricultural pests of economic importance to the sugarcane industry. A screen of the salivary gland transcriptome of Inopus flavus (James) revealed the presence of viral RNA belonging to a potentially novel member of the family Dicistroviridae. The complete genome sequence consists of 9793 nucleotides with two open reading frames. The genome includes two potential internal ribosomal entry sites (IRESs): one within the 5' UTR and the other in the intergenic region (IGR). Virus particles purified from infected larvae and visualised by electron microscopy were found to be icosahedral, non-enveloped, and 30 nm in diameter.


Subject(s)
Dicistroviridae/classification , Diptera/virology , Saccharum/parasitology , Amino Acid Sequence , Animals , Australia , Dicistroviridae/genetics , Genetic Variation , Genome, Viral/genetics , Internal Ribosome Entry Sites/genetics , Larva/virology , Open Reading Frames/genetics , Phylogeny , RNA, Viral/genetics , Salivary Glands/virology , Virion/ultrastructure
7.
Cells ; 10(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34207477

ABSTRACT

Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.


Subject(s)
Cucumovirus/pathogenicity , Diptera/virology , Nicotiana/parasitology , Nicotiana/virology , Plant Diseases/parasitology , Plant Diseases/virology , Animals , Host-Pathogen Interactions/physiology , Larva/virology , Plant Leaves/parasitology , Plant Leaves/virology
8.
Viruses ; 13(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-34066683

ABSTRACT

Bat flies (Hippoboscoidea: Nycteribiidae and Streblidae) are obligate hematophagous ectoparasites of bats. We collected streblid bat flies from the New World (México) and the Old World (Uganda), and used metagenomics to identify their viruses. In México, we found méjal virus (Rhabdoviridae; Vesiculovirus), Amate virus (Reoviridae: Orbivirus), and two unclassified viruses of invertebrates. Méjal virus is related to emerging zoonotic encephalitis viruses and to the agriculturally important vesicular stomatitis viruses (VSV). Amate virus and its sister taxon from a bat are most closely related to mosquito- and tick-borne orbiviruses, suggesting a previously unrecognized orbivirus transmission cycle involving bats and bat flies. In Uganda, we found mamucuso virus (Peribunyaviridae: Orthobunyavirus) and two unclassified viruses (a rhabdovirus and an invertebrate virus). Mamucuso virus is related to encephalitic viruses of mammals and to viruses from nycteribiid bat flies and louse flies, suggesting a previously unrecognized orthobunyavirus transmission cycle involving hippoboscoid insects. Bat fly virus transmission may be neither strictly vector-borne nor strictly vertical, with opportunistic feeding by bat flies occasionally leading to zoonotic transmission. Many "bat-associated" viruses, which are ecologically and epidemiologically associated with bats but rarely or never found in bats themselves, may actually be viruses of bat flies or other bat ectoparasites.


Subject(s)
Diptera/virology , Viral Tropism , Animals , DNA Barcoding, Taxonomic , Diptera/classification , Diptera/genetics , Geography , Host Specificity , Metagenomics/methods , Mexico , Phylogeny , Uganda
9.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071483

ABSTRACT

Bluetongue virus (BTV) is a segmented RNA virus transmitted by Culicoides midges. Climatic factors, animal movement, vector species, and viral mutation and reassortment may all play a role in the occurrence of BTV outbreaks among susceptible ruminants. We used two enzootic strains of BTV (BTV-2 and BTV-10) to explore the potential for Culicoides sonorensis, a key North American vector, to be infected with these viruses, and identify the impact of temperature variations on virogenesis during infection. While BTV-10 replicated readily in C. sonorensis following an infectious blood meal, BTV-2 was less likely to result in productive infection at biologically relevant exposure levels. Moreover, when C. sonorensis were co-exposed to both viruses, we did not detect reassortment between the two viruses, despite previous in vitro findings indicating that BTV-2 and BTV-10 are able to reassort successfully. These results highlight that numerous factors, including vector species and exposure dose, may impact the in vivo replication of varying BTV strains, and underscore the complexities of BTV ecology in North America.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Diptera/virology , Temperature , Animals , Cell Culture Techniques , Cell Line , Disease Susceptibility , Genotype , Insect Vectors/virology , Reassortant Viruses , Viral Plaque Assay , Virus Replication
10.
J Invertebr Pathol ; 183: 107619, 2021 07.
Article in English | MEDLINE | ID: mdl-34004165

ABSTRACT

From citizen science data we report the first records of blue to violet-colored oniscideans (Oniscidea: Isopoda), indicating potential invertebrate iridescent virus (IIV; Betairidovirinae: Iridoviridae) infection: in Africa, South America, and Oceania; and of the new hosts Armadillidium nasatum and Balloniscus sellowii. DNA sequencing of indigo Porcellio scaber confirms the presence of Invertebrate iridescent virus 31 in Australia. Beyond the Oniscidea, new, putative IIV hosts are identified: hoverfly pupae (Eristalinae), a tortrix moth larva (Phaecasiophora niveiguttana), and a millipede (Harpaphe haydeniana). In addition, the purported positive correlation between virion diameter and wavelength of iridescence is analyzed qualitatively for the first time.


Subject(s)
Citizen Science/statistics & numerical data , Iridoviridae/physiology , Isopoda/virology , Animals , Arthropods/virology , Diptera/virology , Lepidoptera/virology , Victoria
11.
J Med Entomol ; 58(2): 880-890, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33710314

ABSTRACT

Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.


Subject(s)
Diptera/virology , Flavivirus , Host Microbial Interactions , Phylogeny , Animals , Biological Coevolution , Flavivirus/classification , Flavivirus/genetics , Flavivirus/isolation & purification , Genes, Viral , Genome, Viral , RNA/genetics , Virome/genetics
12.
Trends Parasitol ; 37(5): 391-400, 2021 05.
Article in English | MEDLINE | ID: mdl-33419670

ABSTRACT

Blood-sucking insects are important vectors of disease, with biting Diptera (flies) alone transmitting diseases that cause an estimated 700 000 human deaths a year. Insect vectors also bite nonhuman hosts, linking them into host-biting networks. While the major vectors of prominent diseases, such as malaria, yellow fever, dengue, and Zika, are intensively studied, there has been limited focus on the wider interactions of biting insects with nonhuman hosts. Drawing on network analysis and visualisation approaches from food-web ecology, we discuss the value of a network perspective for understanding host-insect-disease interactions, with a focus on Diptera vectors. Potential applications include highlighting pathways of disease transmission, highlighting reservoirs of infection, and identifying emerging and previously unrecognised vectors.


Subject(s)
Communicable Diseases , Diptera , Ecosystem , Host-Pathogen Interactions , Insect Vectors , Animals , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Diptera/parasitology , Diptera/virology , Host-Pathogen Interactions/physiology , Humans , Insect Vectors/parasitology , Insect Vectors/virology
13.
Dev Comp Immunol ; 119: 104010, 2021 06.
Article in English | MEDLINE | ID: mdl-33476667

ABSTRACT

The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.


Subject(s)
Diptera/immunology , Genes, Insect/immunology , Immunity, Innate/immunology , Insect Viruses/immunology , Signal Transduction/immunology , Animals , Culicidae/genetics , Culicidae/immunology , Culicidae/virology , Diptera/genetics , Diptera/virology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Drosophila melanogaster/virology , Genes, Insect/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Insect Viruses/physiology , Mosquito Vectors/genetics , Mosquito Vectors/immunology , Mosquito Vectors/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Signal Transduction/genetics
14.
Viruses ; 12(7)2020 06 27.
Article in English | MEDLINE | ID: mdl-32604989

ABSTRACT

Negeviruses are a proposed group of insect-specific viruses that can be separated into two distinct phylogenetic clades, Nelorpivirus and Sandewavirus. Negeviruses are well-known for their wide geographic distribution and broad host range among hematophagous insects. In this study, the full genomes of two novel negeviruses from each of these clades were identified by RNA extraction and sequencing from a single dungfly (Scathophaga furcata) collected from the Arctic Yellow River Station, where these genomes are the first negeviruses from cold zone regions to be discovered. Nelorpivirus dungfly1 (NVD1) and Sandewavirus dungfly1 (SVD1) have the typical negevirus genome organization and there was a very high coverage of viral transcripts. Small interfering RNAs derived from both viruses were readily detected in S. furcata, clearly showing that negeviruses are targeted by the host antiviral RNA interference (RNAi) pathway. These results and subsequent in silico analysis (studies) of public database and published virome data showed that the hosts of nege-like viruses include insects belonging to many orders as well as various non-insects in addition to the hematophagous insects previously reported. Phylogenetic analysis reveals at least three further groups of negeviruses, as well as several poorly resolved solitary branches, filling in the gaps within the two sub-groups of negeviruses and plant-associated viruses in the Kitaviridae. The results of this study will contribute to a better understanding of the geographic distribution, host range, evolution and host antiviral immune responses of negeviruses.


Subject(s)
Diptera/virology , RNA Viruses/isolation & purification , Animals , Arctic Regions , Genome, Viral , Host Specificity , Insect Viruses/classification , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/physiology , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/physiology
15.
BMC Vet Res ; 16(1): 227, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32615970

ABSTRACT

BACKGROUND: Insect vector transmitted pathogens from contaminated environments are a key potential risk for public health. Meanwhile, transmission by non-blood sucking flies needs to be considered. Sequencing and phylogenetic tree analyses were used to study African swine fever virus (ASFV) genes derived from flies collected from pig farms that were infected with ASFV. The major differential genes were analyzed the encoded proteins, particularly their conformation, physico-chemical features, and interactions identified by immunophenotyping. RESULTS: Results showed that the ASFV p72 and D117L genes from these non-blood sucking flies identified by morphology have high sequence similarity from ASFV genotype II strains, however, A179L is found in an independent cluster, with five amino acid substitutions; four of which are in a continuous sequence. Moreover, the binding of a BH3 peptide into a surface groove formed by α-helices of ASFV A179L from the non-blood sucking flies is consistent with that of representative ASFV genotype II strains, Georgia/2007.They only differ in the direction of spatial interaction of six conserved amino residues. Many hydrophilic amino residues are located at the canonical ligand-binding groove of A179L from flies, with hydrophobic amino residues located at the corresponding positions in A179L of the Georgia/2007.Furthermore, analysis of protein interactions by immunophenotyping revealed that both A179Ls have similar roles in regulating autophagy and apoptosis. CONCLUSIONS: In conclusion, the main genes that differ between ASFV from flies and Georgia/2007 were similar in structure and protein interaction, while exhibiting differences in physico-chemical features and amino acid variations. Understanding the mechanical transmission characteristics of non-blood sucking flies is important.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/transmission , Diptera/virology , Environment , Genes, Viral/genetics , Insect Vectors/virology , Amino Acid Substitution/genetics , Animals , Swine
16.
Emerg Microbes Infect ; 9(1): 651-663, 2020.
Article in English | MEDLINE | ID: mdl-32192415

ABSTRACT

Equine parvovirus-hepatitis (EqPV-H) has recently been associated with cases of Theiler's disease, a form of fulminant hepatic necrosis in horses. To assess whether EqPV-H is the cause of Theiler's disease, we first demonstrated hepatotropism by PCR on tissues from acutely infected horses. We then experimentally inoculated horses with EqPV-H and 8 of 10 horses developed hepatitis. One horse showed clinical signs of liver failure. The onset of hepatitis was temporally associated with seroconversion and a decline in viremia. Liver histology and in situ hybridization showed lymphocytic infiltrates and necrotic EqPV-H-infected hepatocytes. We next investigated potential modes of transmission. Iatrogenic transmission via allogeneic stem cell therapy for orthopedic injuries was previously suggested in a case series of Theiler's disease, and was demonstrated here for the first time. Vertical transmission and mechanical vectoring by horse fly bites could not be demonstrated in this study, potentially due to limited sample size. We found EqPV-H shedding in oral and nasal secretions, and in feces. Importantly, we could demonstrate EqPV-H transmission via oral inoculation with viremic serum. Together, our findings provide additional information that EqPV-H is the likely cause of Theiler's disease and that transmission of EqPV-H occurs via both iatrogenic and natural routes.


Subject(s)
Hepatitis, Viral, Animal/virology , Horse Diseases/virology , Liver/virology , Parvoviridae Infections/veterinary , Parvovirus/physiology , Animals , Diptera/virology , Feces/virology , Female , Hepatitis, Viral, Animal/pathology , Hepatitis, Viral, Animal/transmission , Hepatocytes/pathology , Hepatocytes/virology , Horse Diseases/pathology , Horse Diseases/transmission , Horses , Infectious Disease Transmission, Vertical , Insect Vectors/virology , Liver/pathology , Lymphocytes , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/virology , Mouth/virology , Necrosis , Parvoviridae Infections/pathology , Parvoviridae Infections/transmission , Parvoviridae Infections/virology , Parvovirus/isolation & purification , Parvovirus/pathogenicity , Viral Tropism , Viremia , Virus Shedding
17.
Virol Sin ; 35(2): 134-142, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31784872

ABSTRACT

So far, ascoviruses have only been identified from Lepidoptera host insects and their transmission vectors-endoparasitic wasps. Here, we reported the first finding of a complete novel ascovirus genome from a Diptera insect, Dasineura jujubifolia. Initially, sequence fragments with homology to ascoviruses were incidentally identified during metagenomic sequencing of the mitochondria of D. jujubifolia (Cecidomyiidae, Diptera) which is a major pest on Ziziphus jujuba. Then a full circular viral genome was assembled from the metagenomic data, which has an A+T percentage of 74% and contains 142,600 bp with 141 open reading frames (ORFs). Among the 141 ORFs, 37 were conserved in all sequenced ascoviruses (core genes) including proteins predicted to participate in DNA replication, gene transcription, protein modification, virus assembly, lipid metabolism and apoptosis. Multi-gene families including those encode for baculovirus repeated open reading frames (BROs), myristylated membrane proteins, RING/U-box E3 ubiquitin ligases, and ATP-binding cassette (ABC) transporters were found in the virus genome. Phylogenetic analysis showed that the newly identified virus belongs to genus Toursvirus of Ascoviridae, and is therefore named as Dasineura jujubifolia toursvirus 2 (DjTV-2a). The virus becomes the second reported species of the genus after Diadromus pulchellus toursvirus 1 (DpTV-1a). The genome arrangement of DjTV-2a is quite different from that of DpTV-1a, suggesting these two viruses separated in an early time of evolution. The results suggest that the ascoviruses may infect a much broader range of hosts than our previous knowledge, and shed lights on the evolution of ascoviruses and particularly on that of the toursviruses.


Subject(s)
Ascoviridae/genetics , Diptera/virology , Genome, Viral , Open Reading Frames , Phylogeny , Animals , Ascoviridae/classification , DNA, Viral/genetics , Metagenomics , Mitochondria/genetics , Virus Replication
18.
Sci Rep ; 9(1): 20076, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882819

ABSTRACT

Lumpy skin disease (LSD) is a devastating disease of cattle characterized by fever, nodules on the skin, lymphadenopathy and milk drop. Several haematophagous arthropod species like dipterans and ticks are suspected to play a role in the transmission of LSDV. Few conclusive data are however available on the importance of biting flies and horseflies as potential vectors in LSDV transmission. Therefore an in vivo transmission study was carried out to investigate possible LSDV transmission by Stomoxys calcitrans biting flies and Haematopota spp. horseflies from experimentally infected viraemic donor bulls to acceptor bulls. LSDV transmission by Stomoxys calcitrans was evidenced in 3 independent experiments, LSDV transmission by Haematopota spp. was shown in one experiment. Evidence of LSD was supported by induction of nodules and virus detection in the blood of acceptor animals. Our results are supportive for a mechanical transmission of the virus by these vectors.


Subject(s)
Diptera/virology , Insect Bites and Stings , Insect Vectors , Lumpy Skin Disease/transmission , Lumpy skin disease virus/pathogenicity , Animals , Cattle , DNA, Viral/genetics , Lumpy Skin Disease/virology , Lumpy skin disease virus/genetics
19.
J Gen Virol ; 100(9): 1271-1272, 2019 09.
Article in English | MEDLINE | ID: mdl-31389783

ABSTRACT

Hytrosaviridae is a family of large, rod-shaped, enveloped entomopathogenic viruses with dsDNA genomes of 120-190 kbp. Hytrosaviruses (also known as salivary gland hypertrophy viruses) primarily replicate in the salivary glands of adult dipteran flies. Hytrosaviruses infecting the haematophagous tsetse fly and the filth-feeding housefly are assigned to two genera, Glossinavirus and Muscavirus, respectively. Whereas muscavirus infections are only overt, glossinavirus infections can be either covert or overt. Overt infections are characterized by diagnostic salivary gland hypertrophy and cause either partial or complete infertility. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hytrosaviridae, which is available at ictv.global/report/hytrosaviridae.


Subject(s)
Diptera/virology , Insect Viruses/classification , Insect Viruses/genetics , Animals , Genome, Viral , Virus Replication
20.
PLoS One ; 14(8): e0221435, 2019.
Article in English | MEDLINE | ID: mdl-31430353

ABSTRACT

Melophagus ovinus (sheep ked) is a blood-sucking ectoparasite that is parasitic primarily on sheep. It is widely distributed in different geographical regions worldwide. In China, it has been mainly found in Xinjiang, Gansu, and Tibet in recent years. In addition to causing direct damage to the animal hosts, M. ovinus also carries pathogens and serves as a vector for disease transmission. Border disease virus (BDV) is a positive-sense, single-stranded RNA pestivirus that mainly infects and causes border disease (BD) in sheep and goats worldwide. Since 2012, this disease has been reported in 4 provinces in China. In the present study, we investigated the presence of BDV in M. ovinus from Xinjiang and Gansu. Frozen M. ovinus collected during 2017 and 2018 from Xinjiang and Gansu and preserved in our laboratory were studied. First, total RNA of M. ovinus was extracted, followed by reverse transcription, PCR (RT-PCR) amplification of the 5'-UTR of BDV, and sequencing of the amplified products. Finally, the sequencing results were analyzed using DNAStar, MEGA 5.0 molecular biology software, and the BLAST online platform. The results from RT-PCR and sequencing analyses showed that among the samples included in the study, only the M. ovinus collected from Qinghe County in Alta, Xinjiang in 2018 tested positive for BDV. BLAST analysis showed that the viral strain with the most similar nucleotide identity to the sequence of the China/BDV/2018 fragment was the goat-derived BDV strain AH12-02 collected in Anhui, China, in 2012. A phylogenetic-tree analysis showed the strain to exhibit a BDV-3 genotype. This is the first report globally on BDV detected in M. ovinus and is also the first report of BDV discovered in Xinjiang, China. This study reconfirms the presence of BDV in China.


Subject(s)
Border disease virus/physiology , Diptera/virology , 5' Untranslated Regions/genetics , Animals , Base Sequence , China , Diptera/anatomy & histology , Female , Male , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...